WAEC WAEC Nigeria General Mathematics

Revision Notes

Topic navigation panel

Topic navigation panel

(Algebraic Fractions)

Multiplying & Dividing Algebraic Fractions

Multiplying & Dividing Fractions

 

Multiplying Algebraic Fractions

When multiplying algebraic fractions, the steps are the same as with regular fractions: multiply the numerators and multiply the denominators.

 

General Rule AB×CD=ACBD\frac{A}{B} \times \frac{C}{D} = \frac{A \cdot C}{B \cdot D}

 

Example: Multiplying with Factorisation

Multiply: 2x23×94x\frac{2x^2}{3} \times \frac{9}{4x}

Step-by-Step Solution:

  1. Multiply the numerators: 2x2×9=18x22x^2 \times 9 = 18x^2
  2. Multiply the denominators: 3×4x=12x3 \times 4x = 12x
  3. Write the result: 2x23×94x=18x212x\frac{2x^2}{3} \times \frac{9}{4x} = \frac{18x^2}{12x}example multiplying algebraic fractions
  4. Simplify: 18x212x=3x2\frac{18x^2}{12x} = \frac{3x}{2}

 

 

 

Worked Example

Worked Example

Multiply: 3x24x×89x\frac{3x^2}{4x} \times \frac{8}{9x}

 

 

 

 

Dividing Algebraic Fractions

Dividing algebraic fractions is just like dividing regular fractions: flip the second fraction and multiply.

General Rule AB÷CD=AB×DC\frac{A}{B} \div \frac{C}{D} = \frac{A}{B} \times \frac{D}{C}

 

Example: Basic Division

Divide: 5x6÷103y\frac{5x}{6} \div \frac{10}{3y}

Step-by-Step Solution:

  1. Flip the second fraction: 103y3y10\frac{10}{3y} \to \frac{3y}{10}
  2. Multiply: 5x6×3y10\frac{5x}{6} \times \frac{3y}{10}
  3. Multiply the numerators: 5x×3y=15xy5x \times 3y = 15xy
  4. Multiply the denominators: 6×10=606 \times 10 = 60
  5. Write the result: 5x6÷103y=15xy60\frac{5x}{6} \div \frac{10}{3y} = \frac{15xy}{60}
  6. Simplify: 15xy60=xy4\frac{15xy}{60} = \frac{xy}{4}

 

Example: Division with Factorisation

Divide: x294x÷x32x2\frac{x^2 - 9}{4x} \div \frac{x - 3}{2x^2}

Step-by-Step Solution:

  1. Flip the second fraction: x32x22x2x3\frac{x - 3}{2x^2} \to \frac{2x^2}{x - 3}
  2. Multiply: x294x×2x2x3\frac{x^2 - 9}{4x} \times \frac{2x^2}{x - 3}
  3. Factorise x29x^2 - 9: x29=(x3)(x+3)So the expression becomes:(x3)(x+3)4x×2x2x3x^2 - 9 = (x - 3)(x + 3) \\ \text{So the expression becomes:} \\ \frac{(x - 3)(x + 3)}{4x} \times \frac{2x^2}{x - 3}
  4. Cancel x3x - 3 from numerator and denominator: (x+3)4x×2x2\frac{(x + 3)}{4x} \times 2x^2
  5. Multiply numerators and denominators: (x+3)2x24x=2x2(x+3)4x\frac{(x + 3) \cdot 2x^2}{4x} = \frac{2x^2(x + 3)}{4x}
  6. Simplify: 2x2(x+3)4x=x(x+3)2\frac{2x^2(x + 3)}{4x} = \frac{x(x + 3)}{2}

 

algebraic fraction division example

 

 

Worked Example

Worked Example

Divide: x2166x÷x43x2\frac{x^2 - 16}{6x} \div \frac{x - 4}{3x^2}

 

 

 

Tuity Tip

Hover me!

Always simplify fractions before multiplying or dividing.

Flip the second fraction when dividing, then multiply.

Factorize when possible to cancel common terms for simpler results.

 

Choose Your Study Plan

MonthlyAnnualSave 20%

Plus

£4.99/month
  • Everything in Free plus...
  • Unlimited revision resources access
  • AI assistance (Within usage limits)
  • Enhanced progress tracking
  • New features soon...

Pro

£9.99/month
  • Everything in Plus plus...
  • Unlimited AI assistance
  • Unlimited questions marked
  • Detailed feedback and explanations
  • Comprehensive progress tracking
  • New features soon...
Most Popular